
Image Compression
L15, EE274, Fall 23

Announcements

● HW3 due today!
● Check clarifications thread on Ed if struggling with P1/P4

● Coming up this week:
● HW4 — released this Fri, will be due Mon 12/4

● Thanksgiving break next week — no classes

● Start working on your projects!
● Milestone due Mon right after thanksgiving break: 11/27

● Details on website project page
● Final presentations in last week of class: 12/6

Recap

1. Transform Coding

 KLT example

 Two knobs!

Quiz Q1

In which of the following cases do you expect vector quantization to improve the lossy
compression performance?
(select all the correct options)

[] i.i.d. data compressed with scalar quantization
[] non-i.i.d. (correlated) data with scalar quantization

In which of the following cases do you expect transform coding to improve the lossy
compression performance?
(select all the correct options)

[] i.i.d. data
[] non-i.i.d. (correlated) data

I

Recap

2. DCT

Quiz Q2
Match the signals to their DCT!

Quiz Q3
For the signal shown above, we take the DCT and truncate (zero out) the 16 highest frequencies (out of 32
total components in the DCT). Identify the reconstructed signal obtained after performing the inverse DCT.

X V x

Recap

3. Audio Compression

Today’s Lecture

Image Compression!

• Bring together everything we have learnt so-far

• Learn about JPEG basics

Slide resources

- “The Unreasonable Effectiveness of JPEG: A Signal Processing Approach”
(Youtube video -> Reducible, beautiful illustrations!)
https://www.youtube.com/watch?v=0me3guauqOU

- EE398A Stanford Lecture Notes: (Bernd Girod)
https://web.stanford.edu/class/ee398a/handouts

What is an image?

What is an image?
Array of pixels: (Height, Width, Channels)

Image Compression

Image from Kodak dataset

764x512 764x512x3 bytes
= 1.1MB!
(Uncompressed)

11 764
W 512

3
Ibyte

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
JPEG -> 27KB (~40X!)

Image Compression -> JPEG 40x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
JPEG -> 14KB (~80X!)

Image Compression -> JPEG 80x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
JPEG -> 8KB (~137X!)

Image Compression -> JPEG 137x

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
BPG -> 8KB (~137X!)

Image Compression -> BPG

HiFiC -> ML-based image compression

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
BPG -> 8KB (~137X!)

Lossy Compression

- Incredible performance gains! ~40x-137x gains without much noticeable
difference (depending upon the codec)

- So ubiquitous, e.g. DSLR camera does JPEG compression by default
(difficult to find a “dataset” of non-compressed images)

- JPEG, JPEG2000, BPG (HEIC), AVIF, JPEG-XL, ML-based image
compressors …

JPEG Image Compression

Rate-Distortion Tradeo!

21

What is the distortion metric?

Lossy Compression: Problem definition

Distortion metric -> MSE?

MSE - basis for much of rate-distortion theory!

Given source image
(a) which of the
following images
do you prefer
visually?

(b), (c), (d), (e), (f)

 
Given source image
(a) which of the
following images
does a compressor
with MSE distortion
prefer?

(b), (c), (d), (e), (f)

Lossy Compression -> Problem definition

Distortion metric -> MSE?

Lots of research into understanding “Human
Perceptual loss”...

For simplicity, we will consider MSE (+heuristics)

Lossy Compression: Problem caveats

- Typically we care about compressing a single image, and not a
group of images

- Non-asymptotic performance of various techniques is important

- Data is most likely non-stationary:
need to convert/transform appropriately

Lossy Compression: Tools we know

- Scalar Quantization: fast, not the best

- Vector Quantization: very good, but slow as dim increases

- Transform Coding: Decorrelate data, and then use simpler (scalar)
quantization

- Predictive coding: Fancier delta coding

AllAll

All are useful in different contexts!

Compress Image — what’s the first obvious thought?

AllAll

Array of pixels:

(H, W, C)

Compress Image — what’s the first obvious thought?

AllAll

• Downsample Original Image!

e.g. (H//2, W//2, Channels)
compresses by 4X!

• Typically upsampled at the decoder to recover
original array of (H, W, C)

• Very common in practice!

G W C H HID
WILD

C

Vector Quantization / Color Quantization

AllAll

Original Image

Simple Idea:
quantize the 3-dim vector (R,G,B)

d
8bit

28.28.28
K B

Vector Quantization / Color Quantization

AllAll

Simple Idea:
quantize the 3-dim vector
(R,G,B)

Number of colors = 256
(3X compression!)

Vector Quantization / Color Quantization

AllAll

Simple Idea:
quantize the 3-dim vector
(R,G,B)

Number of colors = 16
(6X compression!)

Vector Quantization / Color Quantization

AllAll

Number of colors = 256
(3x compression!)

Q: How can we further improve
compression?

Vector Quantization / Color Quantization

AllAll

Vector Quantization / Color Quantization

AllAll

Number of colors = 256
(3X compression!)

Q: How can we further improve
compression?

Ans: Exploit “correlation”
between neighboring pixels

Color Cell Compression

Color Cell Compression (1984): use 2 colors (among 256) for each 4x4 block

Uses 16 (=8+8) bits/block for storing colors and a bit/pixel to decide which color to use for that pixel
Effectively 2 bits/pixel = 12X compression!

Use Correlation between
neighboring pixels

326 4 4

2b pixel

Color Cell Compression

AllAll
Color Cell Compression (1984): use 2 colors (among 256) for each 4x4 block

Uses 16 (=8+8) bits/block for storing colors and a bit/pixel to decide which color to use for that pixel
Effectively 2 bits/pixel = 12X compression!

Use Correlation between
neighboring pixels

Exploiting Spatial correlation in the data

AllAll

Key Idea:
We need to somehow exploit/remove the correlation between neighboring pixels

Exploiting Spatial correlation in the data

AllAll

TRANSFORM CODING!

Key Idea:
We need to somehow exploit/remove the correlation between neighboring pixels

Block Transform Coding

AllAll

Linear Transform Coding

AllAll

TO
f

m

Recall 1D-DCT vectors

Average value
(DC component)

Higher
frequency
components

Block-Size (X) = N
DCT-Size = NxN

AC
components

Transform Coding: 2D-DCT

2D-DCT basis vectors
(apply 1D along x, and then y)

Block-Size (X) = NxN
DCT-Size = (NxN) x (NxN) pots
to

g

4858

I

Transform Coding: 2D-DCT
Average value
(DC component)

Transform Coding: 2D-DCT

Horizontal Frequencies

Transform Coding: 2D-DCT

Vertical Frequencies

Transform Coding: 2D-DCT

Horizontal + Vertical
Frequencies

Transform Coding: DCT

Transform Coding: DCT

Transform Coding: DCT

Transform Coding: DCT

DCT is Sparse!

Transform Coding: DCT

DCT is Sparse!

Transform Coding: DCT

DCT is Sparse!

but some higher frequency components

Transform Coding -> DCT of noise

DCT is Sparse!

but some higher frequency components X notspane

Transform Coding: DCT
- Observation: For most of the “natural” image blocks, the DCT is sparse,

and concentrated in the lower frequencies

- Observation: For most of the “natural” image blocks, the DCT is sparse,
and concentrated in the lower frequencies

Transform Coding: DCT

- Observation: For most of the “natural” image blocks, the DCT is sparse,
and concentrated in the lower frequencies

Transform Coding: DCT

- Observation: For most of the “natural” image blocks, the DCT is sparse, and
concentrated in the lower frequencies

- Energy Compaction: Most of the high-frequency DCT coefficients have low
magnitude, so can be ignored during lossy-compression (i.e. perform low-
pass filtering)

This key observation forms the basis of JPEG image compression

Transform Coding: DCT

JPEG Image Compression

Familiar Block!

JPEG Image Compression

A lot of design decision for JPEG compressor are based on human vision properties!
(we will have a dedicated lecture on this)

JPEG Image Compression

Color transform + Subsampling

JPEG Image Compression

Color transform Luma
2

aroma

JPEG Image Compression Chroma Subsampling

JPEG Image Compression

First step is Color Transformation from RGB to YCbCr (or Y’CbCr, YUV, Y’UV)

But why? Human-aspect (more on this later)

- Reason 1:  
perceptual color space based on opponent process theory of color vision

- Reason 2: 
different contrast sensitivity of Y, Cb, Cr channels

JPEG Image Compression

Familiar Block!

JPEG Image Compression: 2D-Block DCT

STEP-1:
Cut the image into blocks of size 8x8

STEP-1.5:
subtract 128, to center the pixels

Input 8x8 block

Input 8x8 block
(zero centered)

2D DCT

STEP-2:
2D DCT of each 8x8 block

JPEG Image Compression: 2D-Block DCT

1D DCT
(along x)

Input 8x8 block
(zero centered)

JPEG Image Compression: 2D-Block DCT

2D DCT

Input 8x8 block
(zero centered)

JPEG Image Compression: 2D-Block DCT

Input 8x8 block
(zero centered)

2D DCT

JPEG Image Compression: 2D-Block DCT

STEP-2:
2D DCT of each 8x8 block

JPEG Image Compression

Efficient separable
DCT implementation

Complexity:
2*8*8, instead of 64*64

N 8

ID DC NZ
2 11 FixN2 space NAN

JPEG Image Compression -> Quantization

2D-DCT Quantized-DCT
coefficients

STEP-3:
uniform scalar quantize DCT coefficients based on the quantization table

Rate

controller

JPEG Image Compression

Different quantization tables
For different compression rate

Designed based on water-filling + human vision properties

JPEG Image Compression: Entropy coding

Variable-length code:
Huffman Encode the length;
store the value as-is in bits
Q. Why?

go 40

010,0 5

Y RLE GO
40113,01

5
zero

pedtg t.t I
can lengthencoding

ios I

bits in unary encoding of90

JPEG Image Compression: Entropy coding

Quite complicated:

— Signs of coefficients

— DC vs AC coefficients

— smoother variation in DC vs AC

— DC more important to preserve

— Combining across blocks

— Luma vs Chroma channels

— Chroma subsampling

AllAll

JPEG Compression Summary

- Color Conversion: RGB is converted to YUV color space

- Color Channels: Each color channel is encoded independently of
each other

- Block Coding: JPEG encodes each 8x8 almost independently
(except the DC coefficient)

- Huffman/Arithmetic: JPEG also has support for using Arithmetic
coding, but is rarely used. Lots of caveats on how Huffman is used!

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
JPEG -> 27KB (~40x!)

Image Compression: Analysis

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
JPEG -> 14KB (~80X!)

Image Compression: Analysis

Notice BLOCKY artifacts!

JPEG Decoder specification

AllAll

How would you improve upon JPEG?

BPG:

- Larger and variable-sized blocks are allowed

- Blocks are not independent
 Predict the next block based on the previous ones

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
JPEG -> 8KB (~137X!)

Image Compression: JPEG 137X

Image from Kodak dataset

764x512 Uncompressed -> 1.1MB
BPG -> 8KB (~137X!)

Image Compression: BPG 137X

BPG/H.265-Iframe
Larger and variable-sized blocks are allowed (up to 32x32)

BPG/H.265-Iframe

Larger and variable-sized blocks are allowed (up to 32x32)

BPG/H.265-Iframe
Blocks are not independent anymore!
Predictive coding

BPG Prediction modes

BPG/H.265-Iframe

Larger and variable-sized blocks are allowed (up to 32x32)

What next?

- Beyond Linear transform: JPEG/JPEG2000/BPG all use variants of
DCT, DWT, etc. Can we obtain better performance with non-linear
transforms?

- End-to-End RD Optimization: JPEG the R-D optimization is not
accurate. Rate needs to be shared between different channels etc.
Can we make that end-to-end?

